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Abstract. A model of the dynamics of solving the counting-ones (OneMax)
problem using a simple genetic algorithm (GA) is developed. It uses statistics of
the early generations of GA runs to describe the dynamics of the problem for all
time, using a variety of crossover and mutation rates. The model is very
practical and can be generalized to cover other cases of the OneMax, such as
weighted OneMax, as well as the deceptive function problem, for high enough
crossover rates. Proportional selection with and without Boltzmann scaling
have been modeled; however the Boltzmann extensions are not described here.
In the development of the model, we introduce a new quantity that measures the
effect of the crossover operation in the counting-ones problem and is
independent of generation, for practical purposes.

1 Introduction

Theoretical models of Genetic Algorithms (GAs) fall into three main categories. The
Markov chain model, as developed by Nix, Vose and Liepins [1][2], completely
describes the probabilistic behavior of the GA. However, this model is too costly to
implement computationally for problems with realistic population size and
chromosome length. The statistical mechanics approach, developed by Prügel-
Bennett, Shapiro and Rattray [3][4], gives fairly good results in modeling the
OneMax problem with Boltzmann scaling, for a crossover rate of 100%, however it is
not developed for lower crossover rates or to handle other benchmark problems of GA
such as deceptive functions. The approach of modeling GAs by considering building
blocks (Goldberg [7] and Goldberg, Deb, Thierens [6]), on the other hand, gives us a
good idea about the appropriate population size or the convergence time of the
OneMax and help us determine the failure boundaries in the “control maps”. But the
question of finding the most appropriate crossover or mutation rate is answered, so
far, only by experimental results.  We still lack a model that describes the behavior of
the OneMax problem for different crossover and mutation rates together and allows
us to choose the best parameters.
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Studying the OneMax problem is important not for solution of that problem, per se,
but because many real-world problems solved via genetic algorithms consist of a set
of separable sub-problems for which the optimum is to optimize each individually,
which is reminiscent of OneMax.

In this paper, we develop a model that describes the mean allele dynamics of the
OneMax problem for very high crossover rates. Then, we modify the model by using
statistics of very early generations from GA runs, to describe the complete dynamics
for different (lower) crossover rates. The model is developed to estimate the average
GA dynamics, but it can be used for an individual run of the GA and has the potential
to apply to other cases of GA-based solution of the OneMax problem, such as using
Boltzmann scaling, and the weighted OneMax, or to benchmark problems involving
deceptive functions.  The authors hope to extend the approach to model solution of
more representative real-world problems with various degrees of OneMax similarity
and various amounts of deception.

2 Problem Description and Visual Representation of GA
Dynamics 

We consider the simple genetic algorithm in which two-point crossover, fitness-
proportional selection and mutation are applied in the order given. We develop a
model on the OneMax problem with a population consisting of P chromosomes of
length L. Let S(t) be the set of all chromosomes at time t, chrom an element of this set,
and chrom(i) the allele at the ith locus of this chromosome. The fitness of a

chromosome, chrom, will be denoted as f(chrom), which is equal to ∑
i

)i(chrom  for

the simple OneMax problem. The variables of the population that we are interested in
are the mean fitness  κ1(t),  the variance of the fitness κ2(t), and the set of the mean of
the alleles at each locus i {αi(t)}i=1,…,L , at time t. Define Ah(t) to be the number of
αi(t)’s whose value is less than or equal to h,

{ }L,...,i,h)t()t(#)t(A iih 1=≤= αα  .  (1)

By this definition, for example, A0(t) gives the number of loci where all of the
chromosomes have value 0, while A0.6(t) gives the number of loci  where at most 60%
of the chromosomes have value 1.

The values of the variables (κ1(t), κ2(t), {αi(t)}i=1,..,L) and Ah(t) change from one
GA experiment to another even if we have the same initial population. In terms of
experimental results, we run a GA, with fixed parameters of selection, mutation and
crossover, many times. For each run of the GA, we measure these quantities at each
generation and take the average over all of the runs. The goal of our model is to
estimate average values of these variables, hence the average behavior of the GA. In
order to simplify the notation, we will use the same symbols (κ1(t), κ2(t), {αi(t)}i=1,..,L)
and Ah(t) for values of a specific run of a GA, or of an experimental average of these
values, or of the estimated theoretical average in our model. Which one is denoted
will be clear from the context. We will use the superscripts c, cs or csm in order to
distinguish these variables after crossover, selection or mutation is applied,
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respectively. So, αi
cs(t) represents the mean of alleles at the ith locus at the tth

generation after the crossover and selection are applied, and αi
csm(t) equals αi(t+1).

Note that the crossover operation does not change the mean allele values. Thus, αi(t)
equals αi

c(t).
The study of the time evolution of Ah(t)’s for several values of h gives a very

practical insight into the behavior of the GA. Figure (1) shows the graphs of Ah(t) for
h = 0, 0.1, … 0.9, the crossover rate is 25% and the mutation rate is 0.1%. The
population size is taken as 50 chromosomes and the chromosome length is 100 genes.
Each time slice of such a graph can be seen as a “bar graph” of the mean allele
distribution at the given instant. In other words, the vertical distance between two
curves gives the number of gene locations at which the mean allele is between the
corresponding values, averaged across runs. For example, at t=100, at about 18 gene
locations, none of the chromosomes (i.e. h=0) have value 1; at about 5 locations from
1 to 5 chromosomes (i.e. 1% to 10% of the population, i.e. 0<h 0.1) have a 1 and the
rest have a 0; and at about 50 locations from 45 to 50 chromosomes (i.e. 91% to 100%
of the population, i.e., 0.9<h 1) have a 1 and the rest have a 0, etc. The closer the
curves are to each other, the smaller the variation in the population. We observe that
although the population converges to a more or less stable configuration after 100
generations, there is still some variation within the population due to the existence of
mutation, which has the potential of creating new chromosomes.

Fig. 1. The experimental average values of Ah(t) as a function of time for h =0, 0.1, 0.2, … 0.9 ,
and the bar graph interpretation. The population size is 50 and the chromosome length is 100
genes. The GA parameters are pc = 0.25, pm = 0.001. The average is taken over 100
experiments

When h is quantized with a gap of 0.1 between two consecutive values as above,
we get 10 regions formed between the graphs, including the region above the top
graph. We will use the index h' to count these regions, h' = 1, 2, …, 10, given by
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( ) ( ){ })t(Ay)t(At,yR /h/hh 10101 ′−′′ ≤≤=  , (2)

where A1(t) is defined as the constant function 1.

3 The Model

The model is developed first for the case with a “high enough” crossover rate. Then it
is modified to model the cases with lower crossover rates. The first case involves
three main steps. First, mean alleles after the crossover and the selection are estimated
assuming that the crossover rate is “high enough”. Then, the effect of mutation on the
mean allele is determined. The last step involves the estimation of fitness variance
given the mean allele values.

The second case, in which the crossover rate takes more realistic values, is
modeled by observing some statistical properties of the GA at early generations.

At any GA stage, the mean fitness, κ1, is always the sum of the mean alleles across
loci at that moment, i.e.

∑=
i

i )t()t( ακ1  . (3)

The following sections describe each of these steps in detail.

3.1 Mean Allele After Selection and Crossover with “High Enough” Crossover
Rate

First, consider the case in which the crossover rate is so high that the alleles at any
locus are distributed essentially randomly among the chromosomes. We will call this
crossover rate a “high enough” crossover rate. In fitness-proportional selection, each
chromosome has a selection probability proportional to its relative fitness within the
population. If we denote as qj the probability of selecting the jth chromosome, then

∑ =

=
P

k k

j
j

f

f
q

1

 ,
(4)

where fk is the fitness of the kth chromosome.
Let pi be the probability that a chromosome that is selected randomly with the

above probability scheme after the application of crossover, has 1 at its ith locus. As
with the other symbols, we will use the notation pi(t) for values of a specific run of a
GA at time t, or of an experimental average of these values at time t, or of the
estimated theoretical average in our model, depending on the context. It is easy to
estimate pi(t) theoretically in terms of κ1(t) and αi(t) when the crossover rate is “high
enough”. For this purpose, define the subsets S0

i(t) and S1
i(t) of S(t) as
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{ }00 =∈= )i(chrom)t(Schrom)t(S i    and

                        { }11 =∈= )i(chrom)t(Schrom)t(S i  .

(5)

Then, we have

( )( ))t()t()t(P)chrom(f ii

)t(Schrom i

ακα −−=∑
∈

11

0

   and

                ( ))t()t()t(P)chrom(f ii

)t(Schrom i

ακα −+=∑
∈

11

1

 ,

(6)

where the bar over the summation means the average over all possible configurations
of gene distributions, in which we assume that the genes are distributed randomly
satisfying the given mean allele values, since the crossover rate is “high enough”.
Thus, the estimated average value of pi(t) is

( )
( ) ( )( ))t()t()t(P)t()t()t(P

)t()t()t(P
)t(p

iiii

ii
i ακαακα

ακα
−−+−+

−+=
11

1

11

1
 ,

(7)

which simplifies to

( )
)t(

)t()t(
)t()t(p ii

ii
1

1

κ
ααα −+=  .

(8)

In the process of fitness proportional selection, we apply selection of chromosomes
P times with replacement. Each time, the probability that the selected chromosome
has 1 as its ith allele, is pi(t). So, the expected number of 1’s at the ith locus, after the
selection is over, can be obtained by using a binomial distribution. Let B(n,P,pi)
denote the probability of having n successes after P trials, when the success
probability is pi for each trial. Then, the expected theoretical value of αi

cs(t) is

( ))t(p,P,nBn
P

)t( i

P

n

cs
i ∑

=
⋅=

1

1α  ,
(9)

when the crossover rate is “high enough”.

3.2 Mean Allele After Mutation

In this section, we want to estimate αi
csm(t) given the values of αi

cs(t). Each gene of a
chromosome has the probability pm of changing its value from 1 to 0 or from 0 to 1 by
mutation. When we consider the possible changes at the ith locus only, the expected
number, N, of total allele changes due to mutation can be found by using a binomial
distribution as
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( )∑
=

⋅=
P

n
mp,P,nBnN

1

 .
(10)

Since the percentage of 1’s at the ith locus is αi
cs(t), αi

cs(t)N of these changes are
going to be from 1 to 0, and (1-αi

cs(t))N of the changes are from 0 to 1, on the
average. This means that the number of 1’s at the ith locus, which is Pαi

cs(t), will
become Pαi

cs(t)- αi
cs(t)N+(1-αi

cs(t))N after the mutation. Simplifying this quantity and
dividing by P gives the mean allele for the next generation as

N
P

)t(
)t()t()t(

cs
ics

i
csm
ii

αααα 21
1

−+==+  .
(11)

3.3 Estimation of Fitness Variance for “High Enough” Crossover Rates

The fitness variance by definition is

 2
1

1

2
2

1
)t()chrom(f

P
)t(

P

k
k κκ −











= ∑

=
 .

(12)

If we write the fitness of chromk as the sum of its gene values ak
i and change the

order of summation after expanding the square sign above, we obtain

2
1

1
12

1
)t(aa

P
)t()t(

P

k

j
k

i
k

L

ji

κκκ −+= ∑∑
=≠

 .
(13)

The term ∑
=

P

k

j
k

i
kaa

1

 in Equation (13), counts the number of chromosomes in which

loci i and j both contain 1’s. In the case of “high enough” crossover rates, this count is
estimated by using αi

cs and αj
cs as follows. The probability, p(i,j,n), that locations i and

j have n common 1’s is found by 












÷














−

−
×









cs
j\

cs
j

cs
i

cs
i

P

P

nP

PP

n

P

αα

αα
, where n could

take any value between max(0, Pαi
cs + Pαj

cs –P) and min(Pαi
cs , Pαj

cs) and the product
of P with α’s is rounded to the nearest integer in order to calculate the combinations.
Thus, the estimation of the fitness variance in the case of “high enough” crossover
rates is found by using

2
112

1
)t()n,j,i(pn

P
)t()t( cs

L

ji n

cscs κκκ −⋅+= ∑∑
≠

 .
(14)

The estimation of fitness variance after mutation is done by Prügel-Bennett and
Shapiro, [5]. Their formula gives us
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( ) ( )∑
=

−





 −+−=

L

i
imm

cs
m

csm wpp
P

p
1

2
2

2
2 1

1
121 κκ  ,

(15)

where wi is the weight of the ith locus. In other words, the fitness of a chromosome

(a1, a2, …, aL) is calculated by the weighted summation ∑ iiaw . In our special case,

the values of wi’s are all 1. So, we use the formula

( ) ( )∑
=

−





 −+−=

L

i
mm

cs
m

csm pp
P

)t(p)t(
1

2
2

2
2 1

1
121 κκ  ,

                             ( ) ( ) )t(pp
P

Lp mm
cs

m 1
1

121 2
2

2
2 +=−






 −+−= κκ  ,

(16)

 to estimate the fitness variance after mutation.

3.4 Lower Crossover Rates

Equation (8) gives the probability pi when the crossover rate is very high. In such a
case, as in Section (3.1), we are able to treat the 1’s at a fixed locus of different
chromosomes as identical to each other in terms of their roles in selection because of
the high mixing rate of the crossover operator, which makes chromosomes look
similar to each other, on the average. However, for lower and more realistic crossover
rates, there will be some correlation between alleles within a chromosome and
Equation (8) will no longer hold. Let’s keep the usage of notation pi(t) for the
probability of selecting a 1 at the ith locus in the case of the “high enough” crossover
rate and denote the corresponding probability in the case of a lower crossover rate by

)t(p~i . To remedy this situation and estimate )t(p~i correctly, we consider imaginary
weights, ci(t), for each locus in order to reflect the average change in the role of 1’s
played in the selection process due to correlation between alleles. The correction
weights, ci(t), are defined implicitly by

( )
)t(

)t(c)t()t(
)t()t(p~ iii

ii
1

1

κ
ααα −+=  .

(17)

The reason why we defined the correction weights as in Equation (17) is because if
we write Equation (8) for a fitness function of the form

∑ ⋅=
i

i )i(chromw)chrom(f , with weights wi, we would get an equation exactly like

Equation (17) with ci replaced by wi. Our correction weights play a similar role at
each locus as wi’s would, except that ci’s change over time.

The next step will be to estimate the ci’s statistically by means of some data
gathered from experiments. In order to do this, the GA is run with fixed rates of pm

and pc up to a pre-selected generation, say t0 . Let us call this generation G0. The
crossover operation with the current rate, pc, is applied to G0 many times. Each time,
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)t(p~i  values are calculated from the experimental data for each locus i, and the
corresponding ci values are found using Equation (17). This process is repeated for
many runs of the GA to obtain statistical measures. It is observed that the value of ci

strongly depends on the values of αi, as expected. Because of this dependence, it
makes more sense to group the ci according to their corresponding αi values before

finding the statistics of the data gathered from experiments. So, define )t(Ch
k 0  as the

set { }10 that such GA of experiment   theof  values 0 .h)t(hkc i
th

i +<≤ α , for h = 0,
0.1, …0.9 . The mean of the correction weights is obtained by finding

( )( ))t(Cmeanmean)t,h( h
k

k

'
00 =µ , h' = 1, 2, …,10, where the relationship between the

index h and h' is given by h = (h' -1)/10, to be consistent with definition (2). In order
to measure how much the correction weights vary from one experiment to another, we

also calculate the standard deviation ( )( ))t(Cmeanstd)t,h( h
k

k

'
00 =σ .

The experimental results show that, when pc is not too low (below about 4%),  µ
and σ remain more or less at the same value regardless of the time, t0. Moreover, µ
shows a linear-like behavior while σ shows a quadratic-like behavior as a function of
h'. This behavior of the crossover operator allows us to use the linear approximation
of µ(h',5) to predict )t(p~i  for the following generations. Figure (2) shows the graphs
of µ for two different rates of crossover with t0 at generations 5, 15 and 30. We have
observed that the inclusion of µ in our model is good enough for describing the effects
of ci distributions and the information coming from σ does not play a significant role
in the counting-ones problem. However, for other problems, such as OneMax with
Boltzmann scaling, σ might be needed in the model. The deviations from the linear
behavior, in Figure (2), at h'=1 or 10 are due to the statistical averaging in which there
were not enough data points available for these border values.

0 5 10
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1

2
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0 5 10
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2
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 h' 0 5 10
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linear fit for t 0 = 5

stopped at t 0 = 30

stopped at t 0 = 5

stopped at t 0 = 15

p
c
 = 3 pc = 0.75pc = 0.25 

µ

Fig. 2. The mean value of the correction weights as a function of mean allele levels, h', for
crossover rates pc = 0.25, 0.75 and 3. The statistical average is found over 100 experiments of
GA. Population size is 50 and the chromosome length is 100 genes
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4 Simulation of the Model and Comparison of the Results with
the Experiments

The simulation of the model for high enough crossover rates starts with selecting a set
of αi(0) values chosen by considering a binomial distribution for each locus in which
we have P selections with a 50% chance of selecting a 1 each time. Equations (9) and
(11) are applied to estimate the mean alleles after the crossover, selection and
mutation operations. This process is iterated for each generation to obtain a dynamic
simulation of the mean allele. At any moment, the mean fitness is estimated by
Equation (3), and the fitness variance in the case of “high enough” crossover rates is
estimated using Equations (14) or (16), depending on whether we are considering the
variance right after the selection process or after the mutation, respectively. The
following simulation results are obtained by taking an average over 10 runs of this
model.

In the case of normal crossover rates Equation (9) is replaced by Equation (17), in
which the ci-values are pre-determined by the linear approximation of the data
gathered at the 5th generation of a set of GA runs as described in Section (3.4), Figure
(2).

In Figures (3)-(6), we see the comparison of the experimental results with the
simulation of the model for population size 50 and the chromosome length 100 genes.
In all these graphs, the black lines represent the experimental results, which are
obtained by averaging 100 runs of the GA, and the thick gray lines represent the
results obtained by the simulation of our model. The “high enough” crossover rate in
our case is pc = 300%, which means that 100% crossover is applied 3 times in a row
before the selection. This rate of crossover is verified experimentally as "high
enough" by observing that there is no significant change in the graphs of Ah(t), κ1(t)
and κ2(t) if a higher value of  pc is used. It can also be verified from Figure (2), since
the correction weights, when pc = 300%, are all very close to 1. In Figure (3), the time
variation of Ah is shown for crossover rates of pc = 4%, 25%, 75% and 300%. We
observed in our experiments with the model that when the crossover rate is to low,
such as pc = 4%, the statistics of correction weights taken only from the 5th generation
is not enough and we needed adjustment by using the statistics at the 15th generation.
Figure (3.a) shows the graph with this adjustment. For pc = 25% and 75%, the
statistics from only the 5th generation are used. The simulation for pc = 300% is
obtained by taking all ci’s as 1. In all four cases, no mutation is applied — i.e., pm = 0.
The graphs look quite similar to each other, except that there is a slight variation in
the value to which the lines converge as time goes to 200 generations. We see that the
limit value decreases from around 40 to 30 as pc increases from 4% to 300%. This
slight decrease observed in the experimental graphs is well captured by the model
simulations.

In Figure (4), the time evolution of Ah is shown for two different mutation rates, in
both of which pc is kept constant at 50%. In the first case the mutation rate is very low
at pm = 0.1%, while in the second case it is pm = 2%. In both cases, the model predicts
the mean allele behavior very well.
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Fig. 3. Ah as a function of time for four different cases where the crossover rate is 4, 25, 75 and
300 percent, respectively. There is no mutation in all four cases. Black lines are the
experimental averages over 100 GA runs and thick gray lines are the results obtained by model
simulations. Population size is 50 and the chromosome length is 100 genes
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Fig. 4. Ah as a function of time for two different cases where the mutation rate is 0.1 and 2
percent, respectively. The crossover rate is 50% in both cases. Black lines are the experimental
averages over 100 GA runs and thick gray lines are the results obtained by model simulations

The experimental results and the model estimations of mean fitness for several
values of pm with crossover rates of pc = 25%, 75% and 300% are shown in Figure
(5). The impact on the mean fitness of changing pc from 300% to 25% is more visible
when pm is low, around 0 or 0.1%. The effect of higher mutation rates dominates the
dynamics of mean fitness evolution, and decreases the amount by which different
crossover rates affect the mean fitness. The estimation of the fitness variance when pc

= 300% is shown in Figure (6) for various mutation rates, together with experimental
averages. In all these graphs, we see that these dynamics of mean fitness and fitness
variance are well captured by the simulation of the model.
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Fig. 5. The mean fitness for three different crossover cases, namely pc = 25%, 75% and 300%.
Each figure shows the graphs for four different mutation rates, pm = 0%, 0.1%, 1% and 2%.
Black lines are the experimental averages obtained by averaging over 100 GA runs and thick
gray lines are the results obtained by model simulations. Population size is 50 and the
chromosome length is 100 genes
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Fig. 6. The fitness variance for four different rates of mutation, pm = 0%, 0.1%, 1% and 2%,
with crossover rate at 300%. Black lines are the experimental averages obtained by averaging
over 100 GA runs and thick gray lines are the results obtained by model simulations

5 Conclusions and Future Work

In this paper, we have developed a new and very practical model for the GA
dynamics of the OneMax problem, which, for modeling the case of typical crossover
rates, uses some statistics of early generations of the GA in order to predict the rest of
the evolution. The simulation results in Section (4) show that the model describes the
GA dynamics for the OneMax problem very well for different crossover and mutation
rates with fitness proportional selection. The correction weights introduced by
Equation (17) are a new way of analyzing the crossover operator, and they work very
well for two-point crossover, in our GA problem.

Note that our model for “high enough” crossover rates is covering a different case
than the statistical mechanics model of Prügel-Bennett and Shapiro [3]. The
maximum entropy assumption of Prügel-Bennett and Shapiro essentially models a
situation in which the crossover operator is assumed to be effective enough to allow a
relocation of the alleles which is probabilistically most likely to occur, under the
constraints of the given mean fitness and fitness variance, when the alleles move
freely. On the other hand, our model of “high enough” crossover rates does not
assume any constraint in relation to how much the allele can be mixed. The lower
crossover rates are modeled relative to this extreme case using correction measures.
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The authors have applied the model to the weighted OneMax1 problem as well as
to a class of deceptive functions; for the case of “high enough” crossover rates, it
predicts the dynamics very well. They are now modifying the model to cover the
effects of more typical, lower crossover rates for these benchmark problems. The
future work to improve the model would also include the estimation of the fitness
variance for normal crossover rates, and an investigation of the predictive power of
the model in the presence of external noise.

The model can be applied to these benchmark problems even when the crossover,
mutation and the selection rates (in the case of Boltzmann scaling) are changed at
predetermined generations during a GA run. Because of this capability of the model,
it is unique, to the best of the author’s knowledge, among the current models of the
GA.

The method of building blocks for modeling parallel genetic algorithms is applied
by Cantú-Paz [8] in the case where the migration occurs only when all the populations
are converged. Since our model estimates the mean value at each locus at any
generation, it can be used to determine a suitable migration time as well as the
migration rate for parallel genetic algorithms (in the island model case) when
migrations are allowed at any generation.
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